Answer:
Option A
Explanation:
Given , acceleration of car, a= 5 m/s2,
deceleration of car a=5 m/s2 , total time taken from start of end is, t=25s and average velocity of car
$v_{avg}$=72 km/hr=20 m/s ( 1$\frac{km}{hr}=\frac{5}{18}m/s$)
Since, $v_{avg}$= total displacement/total time taken
2t, total time taken by the car during acceleration and deceleration,
$v_{avg}=20=\frac{d_{1}+d_{(25-2t)}+d_{t}}{25}$
$=\frac{2d_{1}+d_{(25-2t)}}{25}$
Since, $d_{t}=0+\frac{1}{2}{at^{2}}=\frac{1}{2}at^{2}=\frac{5}{2}t^{2} $ and
$d_{(25-2t)}= v_{uni.}(25-2t)$
where, $v_{uni.} $=5t
now, $v_{avg}=20=\frac{2\left(\frac{5}{2}t^{2}\right)+5t(25-2t)}{25}$
$\therefore$ $20 \times 25 =5t^{2}+5t(25-2t)$
$\Rightarrow$ 500=$5t^{2}+125t-10t^{2}$
$\Rightarrow$ $t^{2}-25t+100=0$
so, it gives t=20 and 5s
Hence , the time of uniform motion,
$t_{20}=25-2t=25-2 \times 20=-15 s$
($\because$ Not possible )
or $t_{5}=25-10=15s$
So, the correct option is (a)